Department of Physical Chemistry

Nanostructured Model Catalysts

HomeStaffResearch

Publication List

2022
220.
; ; ; ; ; ; ; ; ; ; ; ; Atomic-Scale Insights into Nickel Exsolution on LaNiO3Catalysts viaIn SituElectron Microscopy. J. Phys. Chem. C 126 (1), 786-796
219.
; ; ; ; ; ; ; ; Investigating the Cold Plasma Surface Modification of Kaolin- and Attapulgite-Bound Zeolite A. J. Ind. Engin. Chem. 106, 113-127
218.
; ; ; ; ; ; Tailoring the metal-perovskite interface for promotional steering of the catalytic NO reduction by CO on Pd - lanthanum iron manganite composites . Appl. Catal. B accepted
2021
217.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Steering the Methane Dry Reforming Reactivity of Ni/La2O3Catalysts by Controlled In Situ Decomposition of Doped La2NiO4Precursor Structures. ACS Catal. 11, 43-59
216.
; ; ; ; ; ; ; ; ; ; ; ; ; ; True Nature of the Transition-Metal Carbide/Liquid Interface Determines Its Reactivity. ACS Catal. 11, 4920-4928
215.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Mechanistic In Situ Insights into the Formation, Structural and Catalytic Aspects of the La2NiO4 Intermediate Phase in the Dry Reforming of Methane over Ni-based Perovskite Catalysts. Appl. Catal. A 612, 117984
214.
How thein situmonitoring of bulk crystalline phases during catalyst activation results in a better understanding of heterogeneous catalysis. CrystEngComm 23 (37), 6470-6480
213.
; Steering the Catalytic Properties of Intermetallic Compounds and Alloys in Reforming Reactions by Controlledin SituDecomposition and Self-Activation. ACS Catal. 11 (9), 5271-5286
212.
; ; ; ; ; ; ; ; ; ; ; ; The sol–gel autocombustion as a route towards highly CO2-selective, active and long-term stable Cu/ZrO2methanol steam reforming catalysts. Mater. Chem. Front. 5 (13), 5093-5105
211.
; ; ; ; ; ; ; ; ; ; ; ; ; Steering the methanol steam reforming performance of Cu/ZrO2 catalysts by modification of the Cu-ZrO2 interface dimensions resulting from Cu loading variation. Appl. Catal. A 623, 118279-
210.
; ; ; ; ; ; ; ; ; Steering the methanol steam reforming reactivity of intermetallic Cu–In compounds by redox activation: stabilityvs.formation of an intermetallic compound–oxide interface. Catal. Sci. Technol. 11 (16), 5518-5533
209.
; ; ; ; ; ; ; ; ; ; ; Silicon oxycarbonitride ceramic containing nickel nanoparticles: from design to catalytic application. Mater. Adv. 2 (5), 1715-1730
208.
; ; ; ; ; OperandoFourier-transform infrared–mass spectrometry reactor cell setup for heterogeneous catalysis with glovebox transfer process to surface-chemical characterization. Review of Scientific Instruments 92 (2), 024105-
2020
207.
; ; ; ; Adsorptive removal of micropollutants from wastewater with floating-fixed-bed gasification char. J. Environ. Chem. Eng. 8, 103757
206.
; ; ; ; ; ; ; ; ; ; In Situ - Determined Catalytically Active State of LaNiO3 in Methane Dry Reforming. ACS Catal 10, 1102-1112
205.
; ; ; ; Synthesis of non-toxic inorganic blue pigments in the melilite-type structure. Mater. Adv. 1 (7), 2293-2299
204.
; ; ; Synthesis and crystal structure of ABW-type SrFe1.40V0.60O4. Acta Crystallogr E Cryst Commun 76 (5), 664-667
203.
; ; ; ; Spectro-electrochemical setup for in situ and operando mechanistic studies on metal oxide electrode surfaces. Rev. Sci. Instr. 91 (8), 084104-
202.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Carbide-Modified Pd on ZrO2 as Active Phase for CO2-Reforming of Methane—A Model Phase Boundary Approach. Catalysts 10 (9), 1000-1029
201.
; ; ; ; ; ; ; ; ; ; ; Elastic and thermal properties of W7Re13B and synthesis of a new ternary phase W1.3Re2.7B2. Solid State Sci 105, 106211-106218
200.
; ; Increasing Complexity Approach to the Fundamental Surface and Interface Chemistry on SOFC Anode Materials. Acc. Chem. Res. 53, 1811-1821
199.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Mechanistic insights into the catalytic methanol steam reforming performance of Cu/ZrO2 catalysts by in situ and operando studies. J. Catal. 391, 497-512
198.
; ; ; ; ; ; ; ; ; ; ; Elucidating the physical properties of the molybdenum oxide Mo4O11 and its tantalum substituted variant Mo2Ta2O11. Z. Kristallogr. 235 (4-5), 143-155
2019
197.
; ; ; ; ; Parameter Screening of PVDF/PVP Multi-Channel Capillary Membranes. Polymers 11 (3), 463-468
196.
; ; ; ; ; ; ; ; Structural and kinetic aspects of CO oxidation on ZnOx-modified Cu surfaces. Appl. Catal., A 572, 151-157
195.
; ; ; ; ; ; ; ; ; ; ; ; ; Crystallographic and Electronic Evolution of Lanthanum Strontium Ferrite (La0.6Sr0.4FeO3-δ) Thin Film and Bulk Model Systems during Iron Exsolution. Phys. Chem. Chem. Phys. 21, 3781-3794
194.
; ; ; ; ; ; ; ; ; ; ; ; Treading in the Limited Stability Regime of Lanthanum Strontium Ferrite — Reduction, Phase Change and Exsolution. ECS Trans. 91 (1), 1771-1781
193.
; ; ; Substoichiometric zirconia thin films prepared by reactive sputtering of metallic zirconium using a direct current ion beam source. Surf. Sci. 680, 52-60
192.
; ; ; ; ; An Ultra-Flexible Modular High Vacuum Setup for Thin Film Deposition. Rev. Sci. Instrum. 90 (2), 023902
191.
; ; CO2 Reduction by Hydrogen Pre‐Reduced Acceptor‐Doped Ceria. ChemPhysChem 20, 1706-1718
190.
; ; ; ; ; ; ; ; ; ; ; ; ; Promotion of La(Cu0.7Mn0.3)0.98M0.02O3−δ (M = Pd, Pt, Ru and Rh) perovskite catalysts by noble metals for the reduction of NO by CO. Journal of Catalysis 379, 18-32
189.
; ; ; ; ; Hybrid synthesis of zirconium oxycarbide nanopowders with defined and controlled composition. RSC Adv. 9 (6), 3151-3156
188.
; ; ; ; ; ; ; ; ; ; Reactive metal-support interaction in the Cu-In2O3system: intermetallic compound formation and its consequences for CO2-selective methanol steam reforming. Sci. Technol. of Adv. Mater. 20 (1), 356-366
187.
; ; ; ; ; ; ; Zirconium oxycarbide - a highly stable catalyst material for electrochemical energy conversion. ChemPhysChem 21, 1-8
186.
; ; ; ; ; ; ; ; DEMS studies of the ethanol electro-oxidation on TiOC supported Pt catalysts–Support effects for higher CO2 efficiency. Electrochim. Acta 304, 80-86
185.
; ; ; ; ; ; ; Modeling and optimization of V2O5/TiO2 nanocatalysts for NH3-Selective catalytic reduction (SCR) of NOx by RSM and ANN techniques. J. Environ. Management 238, 360-367
2018
184.
; ; ; ; ; ; ; ; On the structural stability of crystalline ceria phases in undoped and acceptor-doped ceria materials under in situ reduction conditions. CrystEngComm 21, 145-154
183.
; ; ; ; ; ; ; ; ; ; ; ; ; ; Surface Carbon as a Reactive Intermediate in Dry Reforming of Methane to Syngas on a 5% Ni/MnO Catalyst. ACS Catal. 8, 8739-8750
182.
; ; ; ; Spectroscopic investigation of the electronic structure of yttria-stabilized zirconia. Phys. Rev. Mater. 2 (3), 035801
181.
; ; ; ; ; Complex oxide thin films: Pyrochlore, defect fluorite and perovskite model systems for structural, spectroscopic and catalytic studies. Appl. Surf. Sci. 452, 190-200
180.
; ; ; ; ; ; ; Formation of Pd-Ce intermetallic compounds by reductive metal-support interaction. J. Solid State Chem. 265, 176-183
179.
; ; ; ; ; ; ; ; ; ; ; Structural Investigations of La0.6Sr0.4FeO3-δ under Reducing Conditions: Kinetic and Thermodynamic Limitations for Phase Transformations and Iron Exsolution Phenomena. RSC Adv. 8, 3120-3131
178.
; ; ; ; CO2 Reduction on the Pre-reduced Mixed Ionic-Electronic Conducting Perovskites La0.6Sr-0.4FeO3-δ and SrTi0.7Fe0.3O3-δ. ChemPhysChem 19 (1), 93-107
177.
; ; ; ; ; H2reduction of Gd- and Sm-doped ceria compared to pure CeO2at high temperatures: effect on structure, oxygen nonstoichiometry, hydrogen solubility and hydroxyl chemistry. Phys. Chem. Chem. Phys. 20 (34), 22099-22113
176.
; ; ; ; ; ; ; ; ; ; ; Zirconium-Assisted Activation of Palladium To Boost Syngas Production by Methane Dry Reforming. Angew. Chem. Int. Ed. 57, 1-7
175.
; ; ; ; ; ; ; ; ; ; ; Zirconium-assistierte Aktivierung von Palladium zur Steigerung der Produktion von Synthesegas in der Trockenreformierung von Methan. Angew. Chem. 130, 1-7
174.
; ; ; ; ; ; ; ; ; ; ; Water adsorption at zirconia: From the ZrO2(111)/Pt3Zr(0001) model system to powder samples . J. Mater. Chem. A 6, 17587-17601
173.
; ; ; ; ; ; ; ; ; ; ; The Chemical Evolution of the La0.6Sr0.4CoO3−δ Surface Under SOFC Operating Conditions and Its Implications for Electrochemical Oxygen Exchange Activity. Top. Catal. ,
172.
; ; ; ; ; ; ; Impregnated and Co-precipitated Pd–Ga2O3, Pd–In2O3 and Pd–Ga2O3–In2O3 Catalysts: Influence of the Microstructure on the CO2 Selectivity in Methanol Steam Reforming. Catal. Lett. 148 (10), 3062-3071
171.
; ; ; ; ; ; ; ; Role of Precursor Carbides for Graphene Growth on Ni(111). Sci Rep 8 (1), 2662-2675
170.
; ; ; ; ; ; ; Hydrogen reduction and metal-support interaction in a metastable metal-oxide system: Pd on rhombohedral In2O3. J. Solid State Chem. 266, 93-99
169.
; ; ; ; ; ; Transmission in situ and operando high temperature X-ray powder diffraction in variable gaseous environments. Rev. Sci. Instr. 89 (3), 033904-033904
2017
168.
; ; ; ; ; Preferentially Oriented TiO2 Nanotubes as Anode Material for Li-Ion Batteries: Insight into Li-Ion Storage and Lithiation Kinetics. ACS Appl. Mater. Interfaces 9 (42), 36828-36836
167.
; ; ; ; ; Poly(piperazine-amide)/PES Composite Multi-Channel Capillary Membranes for Low-Pressure Nanofiltration. Polymers 9 (12), 654-662
166.
; ; ; ; The Crystallographic and Electronic Phase Diagrams of Yttria-Stabilized Zirconia Model Electrolytes. ECS Trans. 78 (1), 311-319
165.
; From Zirconia to Yttria: The Quest for the YSZ Thin Film Phase Diagram. Imaging & Microscopy 19 (1), 24-26
164.
; ; ; ; ; ; ; ; ; ; ; Iron Exsolution Phenomena in Lanthanum Strontium Ferrite SOFC Anodes. ECS Trans. 78 (1), 1327-1341
163.
; ; ; PVD-Deposited Micro-SOFC Model Systems. ECS Trans. 78 (1), 1771-1780
162.
; ; ; ; Carbon tolerance of Ni–Cu and Ni–Cu/YSZ sub-μm sized SOFC thin film model systems. Appl. Surf. Sci. 402, 1-11
161.
; ; ; ; ; ; ; Li3Co1.06(1)TeO6: synthesis, single-crystal structure and physical properties of a new tellurate compound with CoII/CoIII mixed valence and orthogonally oriented Li-ion channels. Dalton Trans. 46 (37), 12663-12674
160.
; ; ; ; ; ; ; ; ; ; ; Surface chemistry of pure tetragonal ZrO2 and gas-phase dependence of the tetragonal-to-monoclinic ZrO2 transformation. Dalton Trans. 46 (14), 4554-4570
159.
; ; ; ; ; ; ; Surface chemistry and stability of metastable corundum-type In2O3. Phys. Chem. Chem. Phys. 19 (29), 19407-19419
158.
; ; ; ; ; ; ; Zirconium-Palladium Interactions during Dry Reforming of Methane . ECS Trans. 78 (1), 2419-2430
157.
; ; ; ; ; ; ; A Comparative Discussion of the Catalytic Activity and CO2-Selectivity of Cu-Zr and Pd-Zr (Intermetallic) Compounds in Methanol Steam Reforming. Catalysts 7 (2), 53
156.
; ; ; ; ; ; ; ; ; ; Surface Chemistry of Perovskite-Type Electrodes During High Temperature CO2 Electrolysis Investigated by Operando Photoelectron Spectroscopy. ACS Appl. Mater. Interfaces 9 (41), 35847-35860
155.
; ; ; ; ; ; ; ; ; ; High temperature stable bismuth vanadate composite pigments via vanadyl-exchanged zeolite precursors. Dyes Pigm. 147, 106-112
154.
Reforming Catalysts (Editorial). Catalysts 7, 334-336
153.
; ; ; ; ; ; ; ; Structural and Catalytic Properties of Ag- and Co3O4-Impregnated Strontium Titanium Ferrite SrTi0.7Fe0.3O3−δ in Methanol Steam Reforming. Ind. Eng. Chem. Res. 56 (46), 13654-13662
152.
; ; ; ; ; ; ; ; ; New cubic bixbyite structured phases of Yb6MoO12 and Y6MoO12 prepared by solution combustion method at low temperatures. Eur. J. Inorg. Chem. 15, 2265-2269
151.
; ; ; ; Crystal Structures of the High-Pressure Palladium Dichalcogenides Pd0.94(1)S2 and Pd0.88(1)Se2 Comprising Exceptional PdIV Oxidation States. Z. Anorg. Allg. Chem. 643 (21), 1415-1423
150.
; ; ; ; ; ; ; ; Novel Molecular Spectroscopic Multimethod Approach for Monitoring Water Absorption/Desorption Kinetics of CAD/CAM Poly(Methyl Methacrylate) Prosthodontics. Appl. Spectrosc. 71 (7), 1600-1612
149.
; ; ; ; ; ; ; Surface composition changes of CuNi-ZrO2 during methane decomposition: An operando NAP-XPS and density functional study. Catal. Today 283, 134-143
2016
148.
; PVD-Technologie - Modell-Mikro-Festoxid-Brennstoffzellen. Science Brunch Wasserstoff und Brennstoffzelle, 46-53
147.
; ; ; ; From zirconia to yttria: Sampling the YSZ phase diagram using sputter-deposited thin films. AIP Adv. 6 (2), 025119
146.
#; ; ; ; The Crystallography and Electronic Structure of YSZ Thin Films. Z. Anorg. Allg. Chem 18, 1010
145.
#; ; From zirconia to yttria: sampling the crystallographic and electronic phase diagram using sputter-deposited YSZ thin films. European Microscopy Congress 2016: Proceedings , 724–725
144.
; ; ; ; Evidence for dissolved hydrogen in the mixed ionic-electronic conducting perovskites La0.6Sr0.4FeO3-d and SrTi0.7Fe0.3O3-d. Phys. Chem. Chem. Phys. 18, 26873 - 26884
143.
; ; ; Formation of ZnO Patches on ZnPd/ZnO During Methanol Steam Reforming – A Strong-Metal-Support-Interaction Effect?. J. Phys. Chem. C 120, 10460-10465
142.
; ; ; ; Structural and Chemical Degradation Mechanisms of Pure YSZ and Its Components ZrO2 and Y2O3 in Carbon-Rich Fuel Gases. Phys. Chem. Chem. Phys. 18, 14333-14349
141.
; ; ; ; Structural and Electrochemical Properties of Physisorbed and Chemisorbed Water Layers on the Ceramic Oxides Y2O3, YSZ, and ZrO2. ACS Appl. Mater. Interfaces 8 (25), 16428-16443
140.
*; *; ; ; ; ; ; ; Metastable Corundum-Type In2O3: Phase Stability, Reduction Properties and Catalytic Characterization. J. Phys. Chem. C 120, 15272–15281
139.
; ; ; Structure–Property Relationships in the Y2O3–ZrO2Phase Diagram: Influence of the Y-Content on Reactivity in C1 Gases, Surface Conduction, and Surface Chemistry. J. Phys. Chem. C 120 (39), 22443-22454
138.
; ; ; ; Surface Reactivity of YSZ, Y2O3 and ZrO2 Towards CO, CO2 and CH4: A Comparative Discussion. J. Phys. Chem. C 120, 3882-3898
137.
; ; ; ; ; ; ; ; High-Temperature Carbon Deposition on Oxide Surfaces by CO Disproportionation. J. Phys. Chem. C 120 (3), 1795-1807
136.
; ; ; ; ; ; Distinct Carbon Growth Mechanisms on the Components of Ni/YSZ Materials. Mater. Chem. Phys. 173, 508-515
135.
; ; ; ; ; ; ; ; Zr-Metal-Interactions in Thin Film and Intermetallic Compound Systems in Fuel Reforming Processes. Z. Anorg. Allg. Chem 18, 1079
134.
; ; ; ; ; ; ; ; Microstructural and Chemical Evolution and Analysis of a Self-Activating CO2-Selective Cu–Zr Bimetallic Methanol Steam Reforming Catalyst. J. Phys. Chem. C 120 (44), 25395-25404
133.
; ; ; ; ; ; ; Boosting Hydrogen Production from Methanol/Water by in situ activating Bimetallic Cu-Zr. ChemCatChem 8, 1778-1781
132.
; ; ; ; ; ; ; ; Chemical vapor deposition-prepared sub-nanometer Zr clusters on Pd surfaces: promotion of methane dry reforming. Phys. Chem. Chem. Phys. 18 (46), 31586-31599
131.
; ; ; ; ; Tuning of the Copper-Zirconia Phase Boundary for Selectivity Control of Methanol Conversion. J. Catal. 339, 111-122
130.
; ; ; ; ; Synthesis and evaluation of a novel molecularly imprinted polymer for the selective isolation of acetylsalicylic acid from aqueous solutions. J. Environ. Chem. Eng. 4 (4), 4083-4090
129.
; ; ; ; ; ; ; ; ; Ambient Pressure XPS Study of Mixed Conducting Perovskite-Type SOFC Cathode and Anode Materials under Well-Defined Electrochemical Polarization. J. Phys. Chem. C 120 (3), 1461-1471
128.
; ; ; ; ; ; Physico-chemical properties of unusual Ga2O3 polymorphs. Monatsh Chem 147 (2), 289-300
127.
; ; ; ; ; Infrared spectroscopic techniques for the non-invasive and rapid quality control of Chinese traditional medicine Si-Wu-Tang. Spectrosc. Eur. (28), 16-21
126.
; ; ; ; ; ; ; Ion conductivity in cubically-stabilized fluorite-like structured Er5CeMoO12.5 and Yb5MMoO12.5 (M = Ce, Zr) solid solutions. Solid State Sciences 62, 22-28
125.
; ; ; ; ; ; ; ; ; ; Synthetic Access to Cubic Rare Earth Molybdenum Oxides RE6MoO12−δ (RE = Tm–Lu) Representing a New Class of Ion Conductors. Chem. Mater. 28 (20), 7487-7495
124.
; ; ; ; ; ; ; ; Ni–perovskite interaction and its structural and catalytic consequences in methane steam reforming and methanation reactions. J. Catal. 337, 26-35
123.
; ; ; ; ; ; ; ; Rh-catalyzed Methanation and Methane Steam Reforming Reactions on La0.6Sr0.4FeO3-δ and SrTi0.7Fe0.3O3-δ: Metal-support interaction in Rh-perovskite systems. ChemCatChem 8, 2057-2067
2015
122.
; ; ; ; ; ; Halogen Phases on Pd(110): Compression Structures, Domain Walls, and Corrosion. J. Phys. Chem. C 119 (7), 3613-3623
121.
; ; ; ; ; ; ; ; Reaction of Trimethylaluminum with Water on Pt(111) and Pd(111) from 10–5 to 10–1 Millibar. J. Phys. Chem. C 119 (5), 2399-2411
120.
; ; ; ; ; ; ; ; ; Trimethylaluminum and Oxygen Atomic Layer Deposition on Hydroxyl-Free Cu(111). ACS Appl. Mater. Interfaces 15 (30), 16428–16439
119.
; ; ; ; ; ; ; ; Surface Chemistry of Trimethylaluminum on Pd(111) and Pt(111). J. Phys. Chem. C 19 (33), 19059–19072
118.
; ; ; ; Preparation and characterization of epitaxially grown unsupported yttria-stabilized zirconia (YSZ) thin films. Appl. Surf. Sci. 331, 427-436
117.
; ; ; Steering of methanol reforming selectivity by zirconia–copper interaction. J. Catal. 321, 123-132
116.
; ; ; ; ; ; ; ; ; ; Water Splitting on Model-Composite La0.6Sr0.4FeO3-d (LSF) Electrodes in H2/H2O Atmosphere. ECS Trans. 68 (1), 3333-3343
115.
; ; ; ; ; ; ; ; ; Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An In Situ XPS Study on Perovskite-Type Electrodes. Angew. Chem. 127 (9), 2666-2670
114.
; Formation of Intermetallic Compounds by Reactive Metal-Support Interaction: A Frequently Encountered Phenomenon in Catalysis. ChemCatChem 7 (3), 374-392
113.
#; ; ; Das didaktische Potential der Rastertunnelmikroskopie in der Hochschullehre. CHEMKON 22 (1), 15-22
112.
; ; ; ; ; ; ; ; ; Near-Ambient-Pressure X-ray Photoelectron Spectroscopy Study of Methane-Induced Carbon Deposition on Clean and Copper-Modified Polycrystalline Nickel Materials. J. Phys. Chem. C 119 (48), 26948-26958
111.
; ; ; ; ; Influence of the coagulation medium on the performance of poly(ether sulfone) flat-sheet membranes. J. Appl. Polym. Sci. 132 (11), 41645
110.
; ; ; ; Exsolution of Fe and SrO Nanorods and Nanoparticles from Lanthanum Strontium Ferrite La0.6Sr0.4FeO3−δ Materials by Hydrogen Reduction. J. Phys. Chem. C 119 (38), 22050-22056
109.
; ; ; ; ; ; ; ; ; Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides. J. Phys. Chem. C 119 (21), 11739-11753
108.
; ; ; ; ; ; ; Surface modification processes during methane decomposition on Cu-promoted Ni–ZrO2 catalysts. Catal. Sci. Technol. 5 (2), 967-978
2014
107.
; ; ; The Nanoscale Kirkendall Effect in Pd-Based Intermetallic Phases. J. Phys. Chem. C 118 (31), 17810-17818
106.
; ; ; ; A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy. Rev. Sci. Instrum. 85 (8), 084102
105.
; ; ; ; ; ; ; Hydrogen Surface Reactions and Adsorption Studied on Y2O3, YSZ, and ZrO2. J. Phys. Chem. C 118 (16), 8435-8444
104.
; ; ; ; ; ; ; ; ; ; Methane Decomposition and Carbon Growth on Y2O3, Yttria-Stabilized Zirconia, and ZrO2. Chem. Mater. 26 (4), 1690-1701
103.
; ; ; ; ; ; ; ; Enhanced Kinetic Stability of Pure and Y-Doped Tetragonal ZrO2. Inorg. Chem. 53 (24), 13247-13257
102.
; ; ; ; ; ; ; ; ; ; ; ; The catalytic properties of thin film Pd-rich GaPd2 in methanol steam reforming. J. Catal. 309, 231-240
101.
; ; ; ; Combined UHV/high-pressure catalysis setup for depth-resolved near-surface spectroscopic characterization and catalytic testing of model catalysts. Rev. Sci. Instrum. 85 (5), 055104
100.
Pure and mixed-oxide thin film model systems grown on sodium chloride templates for structural and catalytic studies. Thin Solid Films 562, 1-15
99.
; ; ; Ein einfaches Eintauchen in die Welt der Atome - Das Rastertunnelmikroskop im Schulversuch. Chemie und Schule 29, 5-9
98.
; ; Metal–Support Interaction in Pt/VOx and Pd/VOx Systems: A Comparative (HR)TEM Study. Catal. Lett. 144 (1), 87-96
2013
97.
; ; ; High CO2 Selectivity in Methanol Steam Reforming through ZnPd/ZnO Teamwork. Angew. Chem. Int. Ed. 52 (16), 4389-4392
96.
; ; ; ; In Situ FT-IR Spectroscopic Study of CO2 and CO Adsorption on Y2O3, ZrO2, and Yttria-Stabilized ZrO2. J. Phys. Chem. C 117 (34), 17666-17673
95.
; ; ; ; ZnO is a CO2-selective steam reforming catalyst. J. Catal. 297, 151-154
94.
; ; ; ; ; ; ; ; ; From Oxide-Supported Palladium to Intermetallic Palladium Phases: Consequences for Methanol Steam Reforming. ChemCatChem 5 (6), 1273-1285
93.
; ; ; ; ; ; ; ; ; Methanol steam reforming: CO2-selective Pd2Ga phases supported on α- and γ-Ga2O3. Appl. Catal. A 453, 34-44
92.
; ; ; ; An (ultra) high-vacuum compatible sputter source for oxide thin film growth. Rev. Sci. Instrum. 84 (9), 094103
91.
; ; ; ; Alloying and Structure of Ultrathin Gallium Films on the (111) and (110) Surfaces of Palladium. J. Phys. Chem. C 117 (38), 19558-19567
90.
; ; ; ; ; Formation and stability of small well-defined Cu- and Ni oxide particles. Mat. Chem. Phys. 143 (1), 184-194
89.
; ; ; Thin film model systems of ZrO2 and Y2O3 as templates for potential industrial applications investigated by means of electron microscopy. Mat. Chem. Phys. 138 (1), 384-391
88.
; ; ; ; ; Electron microscopy investigations of metal-support interaction effects in M/Y2O3 and M/ZrO2 thin films (M=Cu, Ni). Mat. Chem. Phys. 143 (1), 167-177
87.
; ; ; ; ; ; ; ; ; ; ; Kinetics of Palladium Oxidation in the mbar Pressure Range: Ambient Pressure XPS Study. Top. Catal. 56 (11), 885-895
2012
86.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; How to Control the Selectivity of Palladium-based Catalysts in Hydrogenation Reactions: The Role of Subsurface Chemistry. ChemCatChem 4 (8), 1048-1063
85.
; ; ; ; Reduction of Different GeO2 Polymorphs. J. Phys. Chem. C 116 (18), 9961-9968
84.
; ; ; ; ; Quantum mechanical calculations of the vibrational spectra of quartz- and rutile-type GeO2. Phys Chem Minerals 39 (1), 47-55
83.
; ; ; ; ; ; ; ; ; ; CO2-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy. J. Catal. 295, 186-194
82.
; ; ; ; ; ; ; ; ; ; ; ; ; In situ XPS study of methanol reforming on PdGa near-surface intermetallic phases. J. Catal. 290, 126-137
81.
; ; ; ; ; ; ; ; ; ; ; ; Hydrogen Production by Methanol Steam Reforming on Copper Boosted by Zinc-Assisted Water Activation. Angew. Chem. Int. Ed. 51 (12), 3002-3006
80.
; ; ; ; ; ; ; ; ; ; ; ; Steigerung der Wasserstoffproduktion in der Methanol-Dampfreformierung auf Kupfer durch Zink-unterstützte Wasseraktivierung. Angew. Chem. 124 (12), 3057-3061
79.
; ; ; Growth and Alloying of Ultra-Thin Zn Layers on Pd(110). J. Phys. Chem. C 116 (5), 3635-3644
2011
78.
; ; ; ; Water−Gas Shift and Formaldehyde Reforming Activity Determined by Defect Chemistry of Polycrystalline In2O3. J. Phys. Chem. C 115 (14), 6622-6628
77.
; ; ; ; ; ; A High-Resolution Diffraction and Spectroscopic Study of the Low-Temperature Phase Transformation of Hexagonal to Tetragonal GeO2 with and without Alkali Hydroxide Promotion. J. Phys. Chem. C 115 (19), 9706-9712
76.
; ; ; ; A novel approach for efficient Ni nanoparticle doping on MgB2 by liquid-assisted sintering. IEEE Trans. Nanotechnology 10 (2), 331-337
2010
75.
; ; ; ; ; ; Hydrogen on In2O3: Reducibility, Bonding, Defect Formation, and Reactivity. J. Phys. Chem. C 114 (19), 9022-9029
74.
; ; ; ; ; ; ; Pd–In2O3 interaction due to reduction in hydrogen: Consequences for methanol steam reforming. Appl. Catal. A 374 (1-2), 180-188
73.
; ; ; ; ; ; ; Preparation and structural characterization of SnO2 and GeO2 methanol steam reforming thin film model catalysts by (HR)TEM. Mat. Chem. Phys. 122 (2-3), 623-629
72.
; ; ; ; ; ; ; ; ; Origin of different deactivation of Pd/SnO2 and Pd/GeO2 catalysts in methanol dehydrogenation and reforming: A comparative study. Appl. Catal. A 381 (1-2), 242-252
71.
No pain, no gain: Probleme und Bruchstellen im neuen Bachelor Studium Chemie/Physikalische Chemie-Lösungsansätze durch die Erprobung didaktischer Strategien. LFU Eigenverlag ,
70.
; ; ; ; ; ; ; ; ; ; ; ; ; ; Subsurface-Controlled CO2 Selectivity of PdZn Near-Surface Alloys in H2 Generation by Methanol Steam Reforming. Angew. Chem. Int. Ed. 49 (18), 3224-3227
69.
; ; ; ; ; ; ; ; ; ; ; ; ; ; Subsurface-gesteuerte CO2-Selektivität von PdZn-Oberflächenlegierungen in der H2-Erzeugung durch Methanoldampfreformierung. Angew. Chem. 122 (18), 3292-3296
68.
; ; ; ; ; ; ; ; ; Steam reforming of methanol on PdZn near-surface alloys on Pd(111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS. J. Catal. 276 (1), 101-113
67.
; ; ; ; ; ; ; ; ; ; ; ; ; ; Temperature-Induced Modifications of PdZn Layers on Pd(111). J. Phys. Chem. C 114 (24), 10850-10856
66.
; ; ; ; ; ; ; ; Catalytic characterization of pure SnO2 and GeO2 in methanol steam reforming. Appl. Catal. A 375 (2), 188-195
2009
65.
; ; ; ; ; ; The phase diagram of halogens on Pt(110): structure of the (4 × 1)-Br/Pt(110) phase. J. Phys.: Condens. Matter 21 (13), 134003-
64.
; ; ; ; Pd/Ga2O3 methanol steam reforming catalysts: Part II. Catalytic selectivity. Appl. Catal. A 358 (2), 203-210
63.
; ; ; ; ; ; Pd/Ga2O3 methanol steam reforming catalysts: Part I. Morphology, composition and structural aspects. Appl. Catal. A 358 (2), 193-202
62.
; ; ; ; ; ; ; Dendritic growth of amorphous gallium oxide in mixed GaOx/WOx thin films. Mat. Chem. Phys. 116 (1), 175-182
61.
; ; ; Growth, thermal stability and structure of ultrathin Zn-layers on Pd(111). Surf. Sci. 603 (1), 251-255
60.
; ; ; ; ; Characterization and the mechanism of formation of the ternary compound MgNi2.5B2 in Ni-doped MgB2 bulk. Supercond. Sci. Technol. 22 (7), 075024-
2008
59.
; ; ; ; ; Hydrogen on polycrystalline β-Ga2O3: Surface chemisorption, defect formation, and reactivity. J. Catal. 256 (2), 268-277
58.
; ; ; ; ; Defect formation and the water–gas shift reaction on β-Ga2O3. J. Catal. 256 (2), 278-286
57.
; ; ; ; ; ; Novel methanol steam reforming activity and selectivity of pure In2O3. Appl. Catal. A 347 (1), 34-42
56.
; ; ; ; ; ; A New Preparation Pathway to Well-Defined In2O3 Nanoparticles at Low Substrate Temperatures. J. Phys. Chem. C 112 (4), 918-925
55.
; ; ; ; ; Growth and stability of Ga2O3 nanospheres. Thin Solid Films 516 (15), 4742-4749
54.
; ; ; ; ; The structure and composition of oxidized and reduced tungsten oxide thin films. Thin Solid Films 516 (10), 2829-2836
2007
53.
; ; ; ; ; ; ; ; ; ; Fluctuations and phase separation in Br/Pt(110). Surf. Sci. 601 (18), 4386-4389
52.
; ; ; ; ; ; ; ; ; ; Fluctuations and Phase Separation in a Quasi-One-Dimensional System. Phys. Rev. Lett. 98 (18), -
51.
; ; ; ; ; ; ; ; ; ; ; Methane Oxidation on Pd(111): In Situ XPS Identification of Active Phase. J. Phys. Chem. C 111 (22), 7957-7962
50.
; ; ; ; ; ; ; ; ; Comparison of the reactivity of different Pd-O species in CO oxidation. Phys. Chem. Chem. Phys. 9 (4), 533-
49.
; ; ; ; ; Ethene Oxidation on Pd(111): Kinetic Hysteresis Induced by Carbon Dissolution. Catal. Lett. 119 (3-4), 191-198
48.
; ; ; ; ; ; Surface resonances on transition metals as low-dimensional model systems. New J. Phys. 9 (10), 386-386
47.
; ; ; ; ; ; Chemisorption of hydrogen on the missing-row Pt(110)-(1 × 2) surface. Top. Catal. 46 (1-2), 161-167
46.
; ; Pd–Al interaction at elevated temperatures: a TEM and SAED study. Catal. Lett. 113 (1-2), 65-72
45.
; ; Structural and redox properties of VOx and Pd/VOx thin film model catalysts studied by TEM and SAED. Phys. Chem. Chem. Phys. 9 (19), 2428-
2006
44.
; ; ; ; ; ; ; ; ; ; Carbon incorporation during ethene oxidation on Pd(111) studied by in situ X-ray photoelectron spectroscopy at 2×10−3 mbar. J. Catal. 242 (2), 340-348
43.
; ; ; ; ; ; Zn Adsorption on Pd(111): ZnO and PdZn Alloy Formation. J. Phys. Chem. B 110 (23), 11391-11398
42.
; ; ; ; Carbon Incorporation in Pd(111) by Adsorption and Dehydrogenation of Ethene. J. Phys. Chem. B 110 (10), 4947-4952
41.
; ; ; ; ; ; ; ; ; ; ; ; ; ; In situ XPS study of Pd(111) oxidation at elevated pressure, Part 2: Palladium oxidation in the 10−1 mbar range. Surface Science 600 (15), 2980-2989
40.
; ; ; ; ; ; ; Growth and decay of the Pd(111)–Pd5O4 surface oxide: Pressure-dependent kinetics and structural aspects. Surface Science 600 (1), 205-218
39.
; ; ; ; ; ; ; Hydride formation and stability on a Pd–SiO2 thin-film model catalyst studied by TEM and SAED. J. Catal. 241 (1), 155-161
38.
; ; Structure–activity correlation in thin film model catalysts: CO hydrogenation on Rh/VOx, Part II: Catalytic activity as a function of oxidation and reduction. Appl. Catal. A 308, 43-49
37.
; ; ; ; ; Interactions of O2 with Pd Nanoparticles on α-Al2O3(0001) at Low and High O2 Pressures. J. Phys. Chem. B 110 (48), 24577-24584
36.
; ; ; ; ; ; ; Growth and structural stability of well-ordered PdZn alloy nanoparticles. J. Catal. 241 (1), 14-19
35.
; ; ; ; Rh–V alloy formation in Rh–VOx thin films after high-temperature reduction studied by electron microscopy. Phys. Chem. Chem. Phys. 8 (10), 1223-1229
34.
; ; ; ; Structure–activity correlations in thin film model catalysts: CO hydrogenation on Rh/VOx, Part I: The morphology, composition and structure of vanadia-supproted and -promoted Rh particles upon oxidation and reduction. Appl. Catal. A 308, 31-42
33.
; ; ; ; ; ; ; Growth and decomposition of aligned and ordered PdO nanoparticles. J. Chem. Phys. 125 (9), 094703-
32.
; ; ; ; ; ; ; ; ; Hydrogen-induced metal-oxide interaction studied on noble metal model catalysts. React Kinet Catal Lett 87 (2), 215-234
31.
; ; ; ; ; ; ; ; ; ; ; In situ XPS study of Pd(111) oxidation. Part 1: 2D oxide formation in 10−3 mbar O2. Surface Science 600 (5), 983-994
2005
30.
; ; ; ; ; ; ; ; Interaction of Pt and Rh nanoparticles with ceria supports: Ring opening of methylcyclobutane and CO hydrogenation after reduction at 373–723K. Appl. Catal. A 294 (2), 279-289
29.
; ; ; Rhodium particles supported by thin vanadia films as model systems for catalysis: An electron microscopy study. Thin Solid Films 484 (1-2), 10-17
28.
; ; ; Catalytic Oxidation of Ethene on Polycrystalline Palladium: Influence of the Oxidation State of the Surface. Catal. Lett. 104 (1-2), 1-8
2004
27.
; ; ; ; Regular Alumina-Supported Nanoparticles of Iridium, Rhodium and Platinum Under Hydrogen Reduction: Structure, Morphology and Activity in the Neopentane Conversion. Catal. Lett. 92 (1/2), 1-9
26.
; ; ; ; Rh and Pt nanoparticles supported by CeO2: Metal-support interaction upon high-temperature reduction observed by electron microscopy. Phys. Chem. Chem. Phys. 6 (22), 5244-
2003
25.
; ; Adsorption and hydrogenation of CO on Pd(111) and Rh(111) modified by subsurface vanadium. Surface Science 532-535, 142-147
24.
; ; ; ; ; ; ; Pt/ceria thin film model catalysts after high-temperature reduction: a (HR)TEM study. Vacuum 71 (1-2), 71-76
23.
; ; ; ; ; ; Platinum nanocrystals supported by silica, alumina and ceria: metal–support interaction due to high-temperature reduction in hydrogen. Surface Science 532-535, 276-280
22.
; ; ; Adsorption of hydrogen and carbon monoxide on Rh(111)/V surface alloys. Surface Science 540 (2-3), 237-245
21.
; ; ; ; ; ; ; High-resolution electron spectroscopy of different adsorption states of ethylene on Pd(111). Surface Science 545 (1-2), 122-136
20.
; ; ; ; ; Silicide formation on a Pt/SiO2 model catalyst studied by TEM, EELS, and EDXS. Journal of Catalysis 219 (2), 434-441
19.
; ; ; ; ; SiO2-supported Pt particles studied by electron microscopy. Materials Chemistry and Physics 81 (2-3), 341-344
18.
; ; ; ; ; Pt/SiO2 model catalyst: Metal-support interaction studied by TEM and EELS. Microsc. Microanal. 9 (Suppl. 3), 200-201
2002
17.
; ; ; ; ; ; Chemical reactivity of the V–Pd(111) subsurface alloy: adsorption of CO. Surface Science 511 (1-3), 392-400
16.
; ; ; ; ; Fermi-surface engineering of a devil’s staircase. Phys. Rev. B 65 (12), -
2001
15.
; ; ; Molecular adsorption on the quasi-one-dimensional c(2×2)-Br/Pt(110) surface. Phys. Chem. Chem. Phys. 3 (7), 1213-1217
14.
; ; ; Surface reactions on inverse model catalysts: CO adsorption and CO hydrogenation on vanadia- and ceria-modified surfaces of rhodium and palladium . Top. Catal. 14 (1-4), 25-33
13.
; ; ; ; Oxygen-induced surface phase transformation of Pd(111): sticking, adsorption and desorption kinetics. Surface Science 482-485, 237-242
12.
; ; ; ; ; Low-dimensional systems on self-structured metal surfaces. Surface Science 482-485, 402-412
2000
11.
; ; ; ; Studies of metal–support interactions with “real” and “inverted” model systems: reactions of CO and small hydrocarbons with hydrogen on noble metals in contact with oxides. Top. Catal. 13 (1-2), 55-66
10.
; The role of oxide promoters in the dissociation of CO and its reaction with hydrogen on Pd (111) and Rh (111): A molecular beam study. Stud. Surf. Sci. Catal. 140, 3339
9.
; ; ; ; ; ; ; Surface and subsurface oxygen on Pd(111). Surface Science 445 (2-3), 380-393
8.
; ; The formation of subsurface oxygen on Pt{110} (1×2) from molecular-beam-generated O2 1Δg. J. Chem. Phys. 112 (19), 8631
1998
7.
; ; ; ; Surface kinetics of a nonlinear oxygen-induced (1×5)→(1×1) phase transition on Ir{100}. J. Chem. Phys. 109 (22), 9967
6.
; ; ; A molecular beam study of nonlinearity in the CO-induced surface restructuring of Ir{100}. J. Chem. Phys. 109 (24), 10996
5.
; ; ; A molecular beam study of the H2-induced lifting of the Ir{100}-(1×5) reconstruction. Surface Science 414 (1-2), 304-314
4.
; ; Dynamics and kinetics of oxygen dissociative adsorption on Pt{110}(1×2). J. Chem. Phys. 109 (16), 6879
1995
3.
; Reaction of adsorbed chlorine with hydrogen on a Pt(100) face. Surface Science 326 (3), 218-228
1993
2.
; Hydrogen adsorption and the transformation of the Pt(100) surface structure. Surface Science 295 (3), 374-384
1991
1.
; ; ; ; Pyramidalization and reactivity of trigonal centers. X-ray crystal structure analysis of two silyl enol ethers from 1-benzoyl- and 1-(methoxycarbonyl)-2-tert-butyl-3,5-dimethyl-4-imidazolidinone (reagents for amino acid synthesis). J. Am. Chem. Soc. 113 (5), 1781-1786

* These authors contributed equally to the respective publication.

# This author was the corresponding author.