16.
Köpfle, N.;
Ploner, K.;
Lackner, P.;
Götsch, T.;
Thurner, C.;
Carbonio, E.;
Hävecker, M.;
Knop-Gericke, A.;
Schlicker, L.;
Doran, A.;
Kober, D.;
Gurlo, A.;
Willinger, M.;
Penner, S.;
Schmid, M.;
Klötzer, B.
Carbide-Modified Pd on ZrO2 as Active Phase for CO2-Reforming of Methane—A Model Phase Boundary Approach.
Catalysts
2020,
10 (9),
1000-1029
15.
Bikaljevic, D.;
Rameshan, R.;
Köpfle, N.;
Götsch, T.;
Mühlegger, E.;
Schlögl, R.;
Penner, S.;
Memmel, N.;
Klötzer, B.
Structural and kinetic aspects of CO oxidation on ZnOx-modified Cu surfaces.
Appl. Catal., A
2019,
572,
151-157
14.
Götsch, T.;
Köpfle, N.;
Grünbacher, M.;
Bernardi, J.;
Carbonio, E.;
Hävecker, M.;
Knop-Gericke, A.;
Bekheet, M.;
Schlicker, L.;
Doran, A.;
Gurlo, A.;
Franz, A.;
Klötzer, B.;
Penner, S.
Crystallographic and Electronic Evolution of Lanthanum Strontium Ferrite (La0.6Sr0.4FeO3-δ) Thin Film and Bulk Model Systems during Iron Exsolution.
Phys. Chem. Chem. Phys.
2019,
21,
3781-3794
13.
Götsch, T.;
Köpfle, N.;
Schlicker, L.;
Carbonio, E.;
Hävecker, M.;
Knop-Gericke, A.;
Schloegl, R.;
Bekheet, M.;
Gurlo, A.;
Doran, A.;
Bernardi, J.;
Klötzer, B.;
Penner, S.
Treading in the Limited Stability Regime of Lanthanum Strontium Ferrite — Reduction, Phase Change and Exsolution.
ECS Trans.
2019,
91 (1),
1771-1781
12.
Götsch, T.;
Hauser, D.;
Köpfle, N.;
Bernardi, J.;
Klötzer, B.;
Penner, S.
Complex oxide thin films: Pyrochlore, defect fluorite and perovskite model systems for structural, spectroscopic and catalytic studies.
Appl. Surf. Sci.
2018,
452,
190-200
11.
Köpfle, N.;
Götsch, T.;
Grünbacher, M.;
Carbonio, E.;
Hävecker, M.;
Knop-Gericke, A.;
Schlicker, L.;
Doran, A.;
Kober, D.;
Gurlo, A.;
Penner, S.;
Klötzer, B.
Zirconium-Assisted Activation of Palladium To Boost Syngas Production by Methane Dry Reforming.
Angew. Chem. Int. Ed.
2018,
57,
1-7
10.
Köpfle, N.;
Götsch, T.;
Grünbacher, M.;
Carbonio, E.;
Hävecker, M.;
Knop-Gericke, A.;
Schlicker, L.;
Doran, A.;
Kober, D.;
Gurlo, A.;
Penner, S.;
Klötzer, B.
Zirconium-assistierte Aktivierung von Palladium zur Steigerung der Produktion von Synthesegas in der Trockenreformierung von Methan.
Angew. Chem.
2018,
130,
1-7
9.
Köpfle, N.;
Mayr, L.;
Lackner, P.;
Schmid, M.;
Schmidmair, D.;
Götsch, T.;
Penner, S.;
Klötzer, B.
Zirconium-Palladium Interactions during Dry Reforming of Methane .
ECS Trans.
2017,
78 (1),
2419-2430
8.
Köpfle, N.;
Mayr, L.;
Schmidmair, D.;
Bernardi, J.;
Knop‐Gericke, A.;
Hävecker, M.;
Klötzer, B.;
Penner, S.
A Comparative Discussion of the Catalytic Activity and CO2-Selectivity of Cu-Zr and Pd-Zr (Intermetallic) Compounds in Methanol Steam Reforming.
Catalysts
2017,
7 (2),
53
7.
Köpfle, N.;
Mayr, L.;
Shi, X.;
Zemlyanov, D.;
Bernardi, J.;
Schwarz, S.;
Armbrüster, M.;
Penner, S.;
Klötzer, B.
Zr-Metal-Interactions in Thin Film and Intermetallic Compound Systems in Fuel Reforming Processes.
Z. Anorg. Allg. Chem
2016,
18,
1079
6.
Mayr, L.;
Köpfle, N.;
Klötzer, B.;
Götsch, T.;
Bernardi, J.;
Schwarz, S.;
Keilhauer, T.;
Armbrüster, M.;
Penner, S.
Microstructural and Chemical Evolution and Analysis of a Self-Activating CO2-Selective Cu–Zr Bimetallic Methanol Steam Reforming Catalyst.
J. Phys. Chem. C
2016,
120 (44),
25395-25404
5.
Mayr, L.;
Schmidmair, D.;
Armbrüster, M.;
Köpfle, N.;
Bernardi, J.;
Schwarz, S.;
Klötzer, B.;
Penner, S.
Boosting Hydrogen Production from Methanol/Water by in situ activating Bimetallic Cu-Zr.
ChemCatChem
2016,
8,
1778-1781
4.
Mayr, L.;
Shi, X.-R.;
Köpfle, N.;
Milligan, C.;
Zemlyanov, D.;
Knop-Gericke, A.;
Hävecker, M.;
Klötzer, B.;
Penner, S.
Chemical vapor deposition-prepared sub-nanometer Zr clusters on Pd surfaces: promotion of methane dry reforming.
Phys. Chem. Chem. Phys.
2016,
18 (46),
31586-31599
3.
Mayr, L.;
Shi, X.;
Köpfle, N.;
Zemlyanov, D.;
Klötzer, B.;
Penner, S.
Tuning of the Copper-Zirconia Phase Boundary for Selectivity Control of Methanol Conversion.
J. Catal.
2016,
339,
111-122
2.
Meischl, F.;
Schemeth, D.;
Harder, M.;
Köpfle, N.;
Tessadri, R.;
Rainer, M.
Synthesis and evaluation of a novel molecularly imprinted polymer for the selective isolation of acetylsalicylic acid from aqueous solutions.
J. Environ. Chem. Eng.
2016,
4 (4),
4083-4090
1.
Mayr, L.;
Köpfle, N.;
Auer, A.;
Klötzer, B.;
Penner, S.
An (ultra) high-vacuum compatible sputter source for oxide thin film growth.
Rev. Sci. Instrum.
2013,
84 (9),
094103
* These authors contributed equally to the respective publication.