From pure oxides over oxide-supported metal and bimetallic particles to mixed oxides: model systems for catalytic and structural studies

Habilitationsschrift

zur Erlangung der Lehrbefugnis für das Fach Physikalische Chemie

von Univ. Ass. Dr. rer. nat. Simon Penner

Institut für Physikalische Chemie Leopold Franzens Universität Innsbruck Innrain 52a

Innsbruck, im Juli 2010

Contents

	Abs	tract	5
1	Con	ceptual approach	8
	1.1	Scope of this thesis	8
	1.2	Electronic and geometric effects in bimetallic catalysts	10
	1.3	Mixed Oxides	11
	1.4	(Strong) metal-support interaction	12
	1.5	The role of the Pd-hydride phases	14
	1.6	Oxide-supported Pd bimetallics in methanol steam reforming	14
	1.7	Model Systems	21
2	Арр	endix: Experimental approach and methods	25
	2.1	Electron Microscopy and related techniques	25
	2.2	X-ray Diffraction	29
	2.3	Atomic Force Microscopy	30
	2.4	Low-energy Ion Scattering	31
	2.5	X-ray Photoelectron Spectroscopy	32
	2.6	Thermal Desorption Spectroscopy	33
	2.7	Raman and Infrared Spectroscopy	34
	2.8	Electric Impedance Spectroscopy	36
	2.9	Catalytic Characterization	36
3	Refe	erences	38
4	List	of considered papers	46
5	Exte	ended summary of the main results of the papers	50
6	Con	nments on own participation	61

7 Paper Section

Paper 1 -	Growth and stability of Ga ₂ O ₃ nanospheres	63
	Thin Solid Films 516 (2008) 4742	
Paper 2 -	A new preparation pathway to well-defined In_2O_3 nanoparticles at low substrate	73
	temperatures	
	J. Phys. Chem. C 112 (2008) 918	
Paper 3 -	Preparation and characterization of SnO_2 and GeO_2 methanol steam reforming thin	83
	film model catalysts by (HR)TEM	
	Mater. Chem. Phys. 122 (2010) 623	
Paper 4 -	Structure and redox properties of VO_x and Pd/VO_x thin film model catalysts	93
	studied by TEM and SAED	
	PhysChemChemPhys 9 (2007) 2428	
Paper 5 -	Growth and decomposition of aligned and ordered PdO nanoparticles	101
	J. Chem. Phys. 125 (2006) 094703	
Paper 6 -	Interactions of O_2 with Pd nanoparticles on $\alpha\text{-}Al_2O_3(0001)$ at low and high O_2	111
	pressures	
	J. Phys. Chem. B 110 (2006) 24577	
Paper 7 -	The structure and composition of oxidized and reduced WO_3 thin films	121
	Thin Solid Films 516 (2008) 2829	
Paper 8 -	Novel methanol steam reforming activity and selectivity of pure In_2O_3	131
	Appl. Catal. A 347 (2008) 34	
Paper 9 -	Hydrogen on In_2O_3 : Reducibility, Bonding, Defect Formation and -Reactivity	143
	J. Phys. Chem. C 114(19) (2010) 9022	
Paper 10-	Catalytic characterization of pure SnO_2 and GeO_2 in methanol steam reforming	153
	Appl. Catal. A 375 (2010) 188	
Paper 11-	Growth and structural stability of well-ordered PdZn nanoparticles	163
	J. Catal. 241 (2006) 14	
Paper 12-	Hydride formation and stability of SiO $_2$ – supported Pd nanoparticles studied by	171
	(HR)TEM and SAED	
	J. Catal. 241 (2006) 155	
Paper 13-	Pd/Ga ₂ O ₃ methanol steam reforming catalysts: Part I: Morphology, composition	181
	and structural aspects	
	Appl. Catal. A 358 (2009) 193	
Paper 14-	Pd/Ga ₂ O ₃ methanol steam reforming catalysts: Part II: Catalytic selectivity	193
	Appl. Catal. A 358 (2009) 203	
Paper 15-	Pd-In interaction due to reduction in hydrogen: Consequences for methanol	203
	steam reforming	
	Appl. Catal. A 374 (2010) 180	

63

Pape	6- Origin of different deactivation of Pd/SnO ₂ and Pd/GeO ₂ catalysts in methanol	215
	dehydrogenation and reforming: a comparative study	
	Appl. Catal. A 381 (2010) 242	
Pape	7- Pd-AI interaction at elevated temperatures: A TEM and SAED study	229
	Catal. Lett. 113 (No. 1-2) (2007) 65	
Pape	8- Rh-V alloy formation in Rh-VO _x thin films studied by electron microscopy	239
	PhysChemChemPhys 8 (2006) 1223	
Pape	9- Structure-activity correlations in thin film model catalysts: CO hydrogenation	249
	on Rh/VO _x , Part I: The morphology, composition and structure of vanadia-	
	supported and –promoted Rh particles upon oxidation and reduction	
	Appl. Catal. A 308 (2006) 31	
Pape	0- Structure-activity correlations in thin film model catalysts: CO hydrogenation on	263
	Rh/VO _x , Part II: Catalytic activity as a function of oxidation and reduction	
_	Appl. Catal. A 308 (2006) 43	
Раре	21- Dendritic growth of amorphous gallium oxide wires in mixed GaO _x /WO _x thin films	273
	Mater. Chem. Phys. 116 (2009) 175	
_		
8	ull list of publications	283
Q	ontributed talks and noster presentations	200
3	ontributed tarks and poster presentations	290
10	eaching experience	296
		200
11	urriculum Vitae	298
12	cknowledgements	302
13	eaching Evaluation	303

Abstract

The present thesis deals with the preparation and structural and catalytic characterization of model systems of three important classes of heterogeneous catalysts. These include pure oxides, oxide-supported bimetallic particles of Pd and Rh and mixed oxides. Structural characterization is based on Analytical High-resolution Electron Microscopy, X-ray diffraction, Atomic Force Microscopy and Low-energy Ion Scattering. Complementary spectroscopic techniques include X-ray Photoelectron Spectroscopy, Thermal Desorption, Raman and insitu FT-Infrared Spectroscopy and Electric Impedance Spectroscopy. Volumetric Adsorption techniques were employed to quantify the adsorbed molecules. Catalytic testing was performed in methanol steam reforming and CO hydrogenation as test reactions.

Concerning methanol steam reforming, special emphasis was put on the determination of the catalytic contribution of the pure oxides (Ga_2O_3 , In_2O_3 , SnO, SnO_2 and GeO_2) to the activity and selectivity of the respective oxide-supported Pd-based bimetallic phases and the eventual preparation of single-phase oxide-supported bimetallic particles. For In_2O_3 , also the interaction with hydrogen was studied to reveal the oxide's reducibility, the hydrogen bonding and the related defect chemistry and reactivity. These studies were complemented by comparing strong metal-support interaction effects in the oxide-supported Pd metal and bimetallic particles and their influence on catalytic performance. Significant differences in the activity and CO_2 -selectivity between the studied oxides were observed, ranging from inactive (SnO_2 , In_2O_3). The surface chemistry of the oxides and, more specifically, the distribution of acidic and basic surface sites, along with their redox properties, are identified to possibly steer the catalytic selectivity. Easily reducible oxides with predominantly basic surface sites tend to favour CO_2 formation in methanol steam reforming.

Pd particles embedded in a **thin film** of each oxide were observed to undergo transformation to the respective bimetallic state upon annealing in hydrogen at temperatures around 523 K. PdZn, Pd₅Ga₂, PdIn, Pd₂Sn/PdSn and Pd₂Ge particles were formed on the thin film model catalysts, along with the suppression of Pd-hydride formation or formation of a heavily hydrogen-distorted Pd lattice as observed for Pd on SiO₂ and Al₂O₃. However, considerable differences regarding structural and thermal stability of the bimetallic phases and particles and the extent of strong metal-support interaction were detected. The exceptional structural and thermal stability of PdZn was ascribed to both an excellent crystallographic match of the structures of Pd metal and PdZn and the high thermodynamic stability of the PdZn phase, resulting in a pronounced "strong particle-stabilization effect". On Ga_2O_3 , In_2O_3 and SnO/SnO₂, the analogous crystallographic relationships also favour the formation of partially ordered bimetallic phases. On GeO₂, the missing crystallographic match results in formation of the thermodynamically most stable Pd₂Ge phase. Bimetallic formation upon reduction in these cases was accompanied by rather substantial particle sintering. Due to the easy reducibility of In₂O₃, metal-support interaction was most pronounced on the Pd-In₂O₃ catalyst, leading to bimetallic formation during catalyst preparation and subsequent bimetallic particle encapsulation by indium oxide species. Pd on Ga₂O₃ was only affected by such effects at high annealing temperatures (T \geq 673 K), whereas on amorphous GeO₂ and SnO/SnO₂ thin films, Pd was not affected by additional metal-support interaction effects (except of bimetallic formation) under similar experimental conditions.

Correlation of these thin film experiments to the technically more relevant **powder systems** revealed the importance of the area of the metal-oxide interface regarding formation of bimetallic phases. Due to the smaller extent of this interface, the onset temperature of bimetallic formation is shifted to higher temperatures by about 50-100 K. Pd particles supported on In_2O_3 powder and on different polymorphs of GeO_2 appear to be the exception to the rule. Whereas encapsulation of Pd-In bimetallic particles was observed on the respective Pd- In_2O_3 powder catalyst, strong metal-support interaction on GeO_2 was observed to strongly depend on the specific polymorph used. On tetragonal GeO_2 , due to its increased reducibility, oxide re-crystallization and encapsulation of metal/bimetallic particles frequently occurs upon annealing in hydrogen. In contrast, on hexagonal GeO_2 no such effects were observed (as on the amorphous film), but a small part of hexagonal GeO_2 was found to be transformed to the tetragonal phase upon annealing at elevated temperatures.

A CO₂-selective bimetallic state was easily established on the ZnO, Ga_2O_3 and In_2O_3 supported catalysts. In contrast, Pd particles supported on GeO_2 and SnO/SnO_2 never approach such a selective state, despite bimetallic formation at comparable temperatures. On SnO/SnO_2 this was interpreted in terms of the absence of active geometric site ensembles for methanol conversion upon formation of more Sn-enriched bimetallics. Pd_2Ge on amorphous and hexagonal GeO_2 converts methanol via dehydrogenation to CO and H_2 . Classical metal-support interaction effects were found to account for the missing activity if Pd_2Ge is supported on tetragonal GeO_2 powder.

Formation of similar bimetallics has been obtained for Pd supported on SiO₂ and Al₂O₃, albeit at higher temperatures (T \ge 673 K), and Rh supported on V₂O₃. In the first two cases, hydrogen reduction at low temperatures (T ~ 473 K) yields an amorphous Pd-hydride phase, most likely associated by the formation of a heavily distorted Pd lattice. For Rh on V₂O₃, formation of Rh-V bimetallics causes a considerable loss in CO hydrogenation activity, which is nevertheless accompanied by a selectivity shift towards methane.

Materials chemistry-related work was primarily focussed on the formation of different oxide nano-architectures and, depending on the preparation conditions (substrate temperature, deposition rate, oxygen partial pressure, post-annealing temperature), resulted in nano-spheres (Ga_2O_3), nano-pyramids (In_2O_3), plates and needles (V_2O_5) and dendrites (co-deposited Ga_2O_3 -WO₃), also suitable as nanostructured thin film model systems for heterogeneous catalysts, as proven in this work. Formation and transformation of a range of different oxide structures has been also observed upon studying the annealing behaviour of WO₃ thin films in various gas atmospheres.

The studies were finally supplemented by growth studies of PdO on Pd (supported on SiO_2), revealing three-dimensional cluster growth, in strong contrast to growth of Rh_2O_3 on Rh forming an epitaxial shell around the individual Rh particles.