Talent selection in youth football: Technical skills rather than general motor performance predict future player status of football talents

Roland Sieghartsleitner, Claudia Zuber, Marc Zibung, Bryan Charbonnet, Achim Conzelmann

Abstract


Recommended multidimensional models for talent selection are difficult to implement for practitioners in the field. Furthermore, their application has not been established from a scientific point of view, with a lack of clarity concerning how to integrate manifold test results with respect to loading, interaction, and compensation phenomena. Consequently, the question of powerful single predictors for future player status are still of interest within talent research in order to determine promising content for less extensive selection procedures. The aim of the current study is an immediate comparison of the prognostic validity of two frequently used areas within talent selection in youth football: general motor performance (e.g., speed and endurance) and specific motor performance (i.e., technical skills). Participants completed four general and four specific motor performance tests at early adolescence (U13/U14, 133 players) and middle adolescence (U16/U17, 85 players). The area under the curve (AUC) from the receiver operating characteristic was used to compare the prognostic validity of both motor performance areas (predicting U20 player status: professional vs. non-professional). Although no comparison at the four different age levels led to a significant difference (.07 ≤ p ≤ .65), there was a continuous superiority of specific over general motor performance in descriptive AUC values. These descriptive differences reached relevant extent within early adolescence (ΔAUCU13 = .09; ΔAUCU14 =.14) and were partially accounted for by the influence of biological maturation. In line with theoretical considerations and earlier research, these results provide further evidence of the superiority of specific over general motor performance in predicting future player status. Until the applicability of multidimensional models is further established, specific motor performance rather than general performance should be included in less extensive talent selection models, especially in early adolescence.

Keywords


soccer; talent identification; motor performance tests; prognostic validity; biological maturation

Full Text:

PDF

References


Antonogeorgos, G., Panagiotakos, D. B., Priftis, K. N., & Tzonou, A. (2009). Logistic regression and linear discriminant analyses in evaluating factors associated with asthma prevalence among 10- to 12-years-old children: divergence and similarity of the two statistical methods. International Journal of Pediatrics, 2009:952042. doi.org/10.1155/2009/952042

Aquino, R., Alves, I. S., Padilha, M. B., Casanova, F., Puggina, E. F., & Maia, José. (2017). Multivariate profiles of selected versus non-selected elite youth Brazilian soccer players. Journal of Human Kinetics, 60, 113–121. doi.org/10.1515/hukin-2017-0094

Bailey, R., & Collins, D. (2013). The standard model of talent development and its discontents. Kinesiology Review, 2(4), 248–259. doi.org/10.1123/krj.2.4.248

Baker, J., Wattie, N., & Schorer, J. (2019). A proposed conceptualization of talent in sport: The first step in a long and winding road. Psychology of Sport and Exercise. Advance online publication. doi.org/10.1016/j.psychsport.2018.12.016

Bangsbo, J., Iaia, F. M., & Krustrup, P. (2008). The yo-yo intermittent recovery test: A useful tool for evaluation of physical performance in intermittent sports. Sports Medicine, 38(1), 37–51.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57(1), 289–300.

Bergman, L., Magnusson, D., & El-Khouri, B. M. (2003). Studying individual development in an interindividual context: A person-oriented approach. Paths through life: Vol. 4. Mahwah, N.J: Erlbaum.

Casartelli, N., Muller, R., & Maffiuletti, N. A. (2010). Validity and reliability of the myotest accelerometric system for the assessment of vertical jump height. Journal of Strength and Conditioning Research, 24(11), 3186–3193. doi.org/10.1519/JSC.0b013e3181d8595c

Coelho-e-Silva, M., Figueiredo, A., Simões, F., Seabra, A., Natal, A., Vaeyens, R., . . . Malina, R. (2010). Discrimination of u-14 soccer players by level and position. International Journal of Sports Medicine, 31(11), 790–796. doi.org/10.1055/s-0030-1263139

Conzelmann, A., Zibung, M., & Zuber, C. (2018). Talent identification and talent development in sports [Talent identification and talent development in sports]. In A. Ritz & N. Thom (Eds.), Talent management (87–106. (In German)). Wiesbaden: Springer Fachmedien.

Dardouri, W., Amin Selmi, M., Haj Sassi, R., Gharb, Z.i., Rebhi, A., & Moalla, W. (2014). Reliability and discriminative power of soccer-specific field tests and skill index in young soccer players. Science & Sports, 29, 88–94.

DeLong, E., DeLong, D., & Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 44(3), 837–845.

Dodd, K. D., & Newans, T. J. (2018). Talent identification for soccer: physiological aspects. Journal of Science and Medicine in Sport. Advance online publication. doi.org/10.1016/j.jsams.2018.01.009

Figueiredo, A., Gonçalves, C. E., Coelho-e-Silva, Manuel, & Malina, R. (2009a). Characteristics of youth soccer players who drop out, persist or move up. Journal of Sports Sciences, 27(9), 883–891. doi.org/10.1080/02640410902946469

Figueiredo, A., Goncalves, C. E., Silva, M., & Malina, Robert. (2009b). Youth soccer players, 11-14 years: Maturity, size, function, skill and goal orientation. Annuals of Human Biology, 36(1), 60–73. doi.org/10.1080/03014460802570584

Forsman, H., Blomqvist, M., Davids, K., Liukkonen, J., & Konttinen, N. (2016). Identifying technical, physiological, tactical and psychological characteristics that contribute to career progression in soccer. International Journal of Sports Science & Coaching, 11(4), 505–513. doi.org/10.1177/1747954116655051

Gonaus, C., & Müller, E. (2012). Using physiological data to predict future career progression in 14- to 17-year-old Austrian soccer academy players. Journal of Sports Sciences, 30(15), 1673–1682. doi.org/10.1080/02640414.2012.713980

Güllich, A. (2013). Talente im Sport. In A. Güllich & M. Krüger (Eds.), Sport: Das Lehrbuch für das Sportstudium (pp. 623–653). Berlin, Heidelberg: Springer.

Höner, O., Leyhr, D., & Kelava, A. (2017). The influence of speed abilities and technical skills in early adolescence on adult success in soccer: A long-term prospective analysis using ANOVA and SEM approaches. PloS One, 12(8), e0182211. doi.org/10.1371/journal.pone.0182211

Höner, O., & Votteler, A. (2016). Prognostic relevance of motor talent predictors in early adolescence: A group- and individual-based evaluation considering different levels of achievement in youth football. Journal of Sports Sciences, 34(24), 2269–2278.

Höner, O., Votteler, A., Schmid, M., Schultz, F., & Roth, K. (2015). Psychometric properties of the motor diagnostics in the German football talent identification and development programme. Journal of Sports Sciences, 33(2), 145–159.

Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (Third edition). Wiley series in probability and statistics: Vol. 398. New York: John Wiley.

Huijgen, B. C. H., Elferink-Gemser, M. T., Lemmink, K., & Visscher, C. (2014). Multidimensional performance characteristics in selected and deselected talented soccer players. European Journal of Sport Science, 14(1), 2–10. doi.org/10.1080/17461391.2012.725102

Jekauc, D., Völkle, M., Lämmle, L., & Woll, A. (2012). Fehlende Werte in sportwissenschaftlichen Untersuchungen. Sportwissenschaft, 42(2), 126–136. doi.org/10.1007/s12662-012-0249-5

Leyhr, D., Kelava, A., Raabe, J., & Höner, O. (2018). Longitudinal motor performance development in early adolescence and its relationship to adult success: an 8-year prospective study of highly talented soccer players. PloS One, 13(5):e0196324. doi.org/10.1371/journal.pone.0196324

Lidor, R., Côté, J., & Hackfort, D. (2009). ISSP position stand: To test or not to test? The use of physical skill tests in talent detection and in early phases of sport development. International Journal of Sport and Exercise Psychology, 7, 131–146.

Little, R. J. A. (1988). A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association, 83(404), 1198–1202. doi.org/10.2307/2290157

Malina, R., Cumming, S. P., Coelho-e-Silva, Manuel, & Figueiredo, A. (2017). Talent identification and development in the context of “growing up”. In J. Baker, S. Cobley, J. Schorer, & N. Wattie (Eds.), Routledge handbook of talent identification and development in Sport (pp. 150–168).

Maszczyk, A., Gołaś, A., Pietraszewski, P., Roczniok, R., Zając, A., & Stanula, A. (2014). Application of neural and regression models in sports results prediction. Procedia - Social and Behavioral Sciences, 117, 482–487. doi.org/10.1016/j.sbspro.2014.02.249

Matta, M. D. O., Figueiredo, António, Garcia, E. S., & Seabra, André. (2014). Perfil morfológico, maturacional, funcional e técnico de jovens futebolistas Brasileiro. Revista Brasileira De Cineantropometria E Desempenho Humano, 16(3), 277. doi.org/10.5007/1980-0037.2014v16n3p277

Meylan, C., Cronin, J., Oliver, J. L., & Hughes, M. (2010). Talent identification in soccer: The role of maturity status on physical, physiological and technical characteristics. International Journal of Sports Science & Coaching, 5(4), 571–592.

Müller, L., Gonaus, C., Perner, C., Müller, E., & Raschner, C. (2017). Maturity status influences the relative age effect in national top level youth alpine ski racing and soccer. PloS One, 12(7):e0181810(7). doi.org/10.1371/journal.pone.0181810

Murr, D., Feichtinger, P., Larkin, P., O’Connor, D., & Höner, O. (2018). Psychological talent predictors in youth soccer: A systematic review of the prognostic relevance of psychomotor, perceptual-cognitive and personality-related factors. PloS One, 13(10), e0205337. doi.org/10.1371/journal.pone.0205337

Murr, D., Raabe, J., & Höner, O. (2017). The prognostic value of physiological and physical characteristics in youth soccer: a systematic review. European Journal of Sport Science, 1–13. doi.org/10.1080/17461391.2017.1386719

Pfeiffer, M., & Hohmann, A. (2012). Applications of neural networks in training science. Human Movement Science, 31(2), 344–359. doi.org/10.1016/j.humov.2010.11.004

Pion, J., Hohmann, A., Liu, T., Lenoir, Matthieu, & Segers, V. (2017). Predictive models reduce talent development costs in female gymnastics. Journal of Sports Sciences, 35(8), 806–811. doi.org/10.1080/02640414.2016.1192669

R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rebelo, A., Brito, J., Maia, J., Coelho-e-Silva, M., Figueiredo, A., Bangsbo, J., . . . Seabra, A. (2013). Anthropometric characteristics, physical fitness and technical performance of under-19 soccer players by competitive level and field position. International Journal of Sports Medicine, 34(4), 312–317. doi.org/10.1055/s-0032-1323729

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., & Müller, M. (2011). Proc: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12, 77. doi.org/10.1186/1471-2105-12-77

Romann, M., Rössler, R., Javet, M., & Faude, O. (2018). Relative age effects in Swiss talent development - a nationwide analysis of all sports. Journal of Sports Sciences, 36(17), 2025–2031. doi.org/10.1080/02640414.2018.1432964

Sarmento, H., Anguera, M. T., Pereira, A., & Araújo, D. (2018). Talent identification and development in male football: a systematic review. Sports Medicine, 48(4), 907–931. doi.org/10.1007/s40279-017-0851-7

Sherar, L. B., Mirwald, R. L., Baxter-Jones, A., & Thomis, M. (2005). Prediction of adult height using maturity-based cumulative height velocity curves. The Journal of Pediatrics, 147(4), 508–514. doi.org/10.1016/j.jpeds.2005.04.041

Sieghartsleitner, R., Zuber, C., Zibung, M., & Conzelmann, A. (2018). “The early specialised bird catches the worm!” - a specialised sampling model in the development of football talents. Frontiers in Psychology, 9:188. doi.org/10.3389/fpsyg.2018.00188

Sieghartsleitner, R., Zuber, C., Zibung, M., & Conzelmann, A. (2019). “Science or coaches’ eye? – both!” Beneficial collaboration of multidimensional measurements and coach assessments for efficient talent selection in in elite youth football. Journal of Sports Science and Medicine, 18, 32–43.

Stuart, E. A., Azur, M., Frangakis, C., & Leaf, P. (2009). Multiple imputation with large data sets: a case study of the children’s mental health Initiative. American Journal of Epidemiology, 169(9), 1133–1139. doi.org/10.1093/aje/kwp026

Till, K., Jones, B. L., Cobley, S., Morley, D., O’Hara, J., Chapman, C., . . . Beggs, C. B. (2016). Identifying talent in youth sport: A novel methodology using higher-dimensional analysis. PloS One, 11(5), e0155047. doi.org/10.1371/journal.pone.0155047

Vaeyens, R., Lenoir, M., Williams, M., & Philippaerts, R. M. (2008). Talent identification and development programmes in sport. Sports Medicine, 38(9), 703–714.

Vaeyens, R., Malina, R., Janssens, M., van Renterghem, B., Bourgois, J., Vrijens, J., & Philippaerts, R. M. (2006). A multidisciplinary selection model for youth soccer: the Ghent Youth Soccer Project. British Journal of Sports Medicine, 40(11), 928-34; discussion 934. doi.org/10.1136/bjsm.2006.029652

Van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: multivariate imputation by chained equations in R. Journal of Statistical Software, 45(3). doi.org/10.18637/jss.v045.i03

Vandendriessche, J. B., Vaeyens, R., Vandorpe, B., Lenoir, M., Lefevre, J., & Philippaerts, R. M. (2012). Biological maturation, morphology, fitness, and motor coordination as part of a selection strategy in the search for international youth soccer players (age 15-16 years). Journal of Sports Sciences, 30(15), 1695–1703. doi.org/10.1080/02640414.2011.652654

Williams, A., & Reilly, T. (2000). Talent identification and development in soccer. Journal of Sports Sciences, 18(9), 657–667. doi.org/10.1080/02640410050120041

Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3, 32–35.

Zeileis, A., & Hothorn, T. (2002). Diagnostic checking in regression relationships. R News, 2(3), 7–10.

Zhang, Z., Beck, M. W., Winkler, D. A., Huang, B., Sibanda, W., & Goyal, H. (2018). Opening the black box of neural networks: Methods for interpreting neural network models in clinical applications. Annals of Translational Medicine, 6(11), 216. doi.org/10.21037/atm.2018.05.32

Zibung, M., Zuber, C., & Conzelmann, A. (2016). The motor subsystem as a predictor of success in young football talents: a Person-Oriented Study. PloS One, 11:e0161049(8). doi.org/10.1371/journal.pone.0161049

Zuber, C., Zibung, M., & Conzelmann, A. (2016). Holistic patterns as an instrument for predicting the performance of promising young soccer players – a 3-year longitudinal study. Frontiers in Psychology, 7:1088. doi.org/10.3389/fpsyg.2016.01088




DOI: https://doi.org/10.15203/CISS_2019.011

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.