Effect of a 25 ingredient sport drink on exercise performance and muscle oxygen extraction: a randomized controlled cross-over trial

Hannes Gatterer, Marc Philippe, Hanno Fröhlich, Stefan Bachler, Florian Mosbach, Martin Burtscher


Many sport drinks contain a mixture of potential ergogenic substances. Recently, a new sport drink with 25 different ingredients was introduced to the market. Various athletes reported beneficial performance effects from the supplement, though without scientific evidence. The aim of this study was to investigate the effects of the sport drink on exercise performance. Nine sport students performed 3 test sessions including a cycle exercise tests to exhaustion, a leg strength test and a jump test. Each session was separated by 1 week. The first session was performed as a familiarization trial. In a random order, half of the participants performed the second session after consumption of the multi ingredient sport drink (MISD intake of 40g, 24 and 1h before each test) and half after placebo ingestion (same amount). During test session 3 the conditions were reversed (cross-over setting). Near infrared spectroscopy analyses were performed on the vastus lateralis during the MISD and placebo cycling test. The sport drink compared to placebo, improved maximal power output (7 watts, 95% CI 1.1-13.4), increased maximal lactate concentration (2.5 mmol/l, 95% CI 1.6-3.4), and power output at the individual threshold (Dmax) (6.1 watts, 95% CI 1.9-10.3). Power output at the 4 mmol/l threshold was reduced (9.0 watts, 95% CI -17.4 to -0.6) during the MISD trial. Additionally, the sport drink led to a steeper tissue oxygenation index decrease (TOI, slope: -0.0182±0.0084 vs. -0.0256±0.0073, p<0.005) during the test. Leg strength and jump ability was not affected by the supplement. The sport drink slightly increased power output during an incremental exercise test. Due to the broad range of substances in the supplement and their different effects, the factors involved in the performance enhancement are speculative. Data show that factors other than muscle oxygen extraction (represented by TOI) are involved in the improved maximal power output.


sports nutrition; dietary supplements; ergogenic aid; power output; endurance

Full Text:



Amann, M., Subudhi, A. W., & Foster, C. (2006). Predictive validity of ventilatory and lactate thresholds for cycling time trial performance. Scand J Med Sci Sports, 16(1), 27-34. doi:10.1111/j.1600-0838.2004.00424.x

Anselme, F., Collomp, K., Mercier, B., Ahmaïdi, S., & Prefaut, C. (1992). Caffeine increases maximal anaerobic power and blood lactate concentration. Eur J Appl Physiol Occup Physiol, 65(2), 188-191.

Astorino, T. A., & Roberson, D. W. (2010). Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review. J Strength Cond Res, 24(1), 257-265. doi:10.1519/JSC.0b013e3181c1f88a

Blomstrand, E. (2006). A role for branched-chain amino acids in reducing central fatigue. J Nutr, 136(2), 544S-547S.

Boushel, R., Langberg, H., Olesen, J., Gonzales-Alonzo, J., Bülow, J., & Kjaer, M. (2001). Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports, 11(4), 213-222.

Braakhuis, A. J., & Hopkins, W. G. (2015). Impact of Dietary Antioxidants on Sport Performance: A Review. Sports Med, 45(7), 939-955. doi:10.1007/s40279-015-0323-x

Cermak, N. M., & van Loon, L. J. (2013). The use of carbohydrates during exercise as an ergogenic aid. Sports Med, 43(11), 1139-1155. doi:10.1007/s40279-013-0079-0

Cheng, B., Kuipers, H., Snyder, A. C., Keizer, H. A., Jeukendrup, A., & Hesselink, M. (1992). A new approach for the determination of ventilatory and lactate thresholds. Int J Sports Med, 13(7), 518-522. doi:10.1055/s-2007-1021309

Close, G. L., Hamilton, D. L., Philp, A., Burke, L. M., & Morton, J. P. (2016). New strategies in sport nutrition to increase exercise performance. Free Radic Biol Med, 98, 144-158. doi:10.1016/j.freeradbiomed.2016.01.016

Dodd, S. L., Brooks, E., Powers, S. K., & Tulley, R. (1991). The effects of caffeine on graded exercise performance in caffeine naive versus habituated subjects. Eur J Appl Physiol Occup Physiol, 62(6), 424-429.

Fröhlich, H., Gatterer, H., Philippe, M., Insam, K., Gröbner, F., & Burtscher, M. (2017). Effekte ergogener Substanzen eines Sportgetränks auf die Ausdauerleistung – eine randomisierte Cross-Over-Studie. Dtsch Z Sportmed, 68, 14-19.

Gatterer, H., Greilberger, J., Philippe, M., Faulhaber, M., Djukic, R., & Burtscher, M. (2013). Short-Term Supplementation with Alpha-Ketoglutaric Acid and 5-Hydroxymethylfurfural Does not Prevent the Hypoxia Induced Decrease of Exercise Performance Despite Attenuation of Oxidative Stress. International Journal of Sports Medicine, 34(1), 1-7. doi:10.1055/s-0032-1312584

Gatterer, H., Schenk, K., Wille, M., Raschner, C., Faulhaber, M., Ferrari, M., & Burtscher, M. (2013). Race performance and exercise intensity of male amateur mountain runners during a multistage mountain marathon competition are not dependent on muscle strength loss or cardiorespiratory fitness. J Strength Cond Res, 27(8), 2149-2156. doi:10.1519/JSC.0b013e318279f817

Graham, T. E. (2001). Caffeine and exercise: metabolism, endurance and performance. Sports Med, 31(11), 785-807.

Hopkins, W. G., Schabort, E. J., & Hawley, J. A. (2001). Reliability of power in physical performance tests. Sports Med, 31(3), 211-234.

James, R. S., Wilson, R. S., & Askew, G. N. (2004). Effects of caffeine on mouse skeletal muscle power output during recovery from fatigue. J Appl Physiol (1985), 96(2), 545-552. doi:10.1152/japplphysiol.00696.2003

Jentjens, R. L., Underwood, K., Achten, J., Currell, K., Mann, C. H., & Jeukendrup, A. E. (2006). Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. J Appl Physiol (1985), 100(3), 807-816. doi:10.1152/japplphysiol.00322.2005

Kreider, R. B., Wilborn, C. D., Taylor, L., Campbell, B., Almada, A. L., Collins, R., . . . Antonio, J. (2010). ISSN exercise & sport nutrition review: research & recommendations. J Int Soc Sports Nutr, 7, 7. doi:10.1186/1550-2783-7-7

Lindinger, M. I., Graham, T. E., & Spriet, L. L. (1993). Caffeine attenuates the exercise-induced increase in plasma [K+] in humans. J Appl Physiol (1985), 74(3), 1149-1155.

Lukaski, H. C. (2005). Low dietary zinc decreases erythrocyte carbonic anhydrase activities and impairs cardiorespiratory function in men during exercise. Am J Clin Nutr, 81(5), 1045-1051.

Matuszczak, Y., Farid, M., Jones, J., Lansdowne, S., Smith, M. A., Taylor, A. A., & Reid, M. B. (2005). Effects of N-acetylcysteine on glutathione oxidation and fatigue during handgrip exercise. Muscle Nerve, 32(5), 633-638. doi:10.1002/mus.20385

Millard-Stafford, M. L., Brown, M. B., & Snow, T. K. (2010). Acute carbohydrate ingestion affects lactate response in highly trained swimmers. Int J Sports Physiol Perform, 5(1), 42-54.

Ott, M., Gogvadze, V., Orrenius, S., & Zhivotovsky, B. (2007). Mitochondria, oxidative stress and cell death. Apoptosis, 12(5), 913-922. doi:10.1007/s10495-007-0756-2

Patterson, C., Raschner, C., & Platzer, H. P. (2009). Power variables and bilateral force differences during unloaded and loaded squat jumps in high performance alpine ski racers. J Strength Cond Res, 23(3), 779-787. doi:10.1519/JSC.0b013e3181a2d7b3

Pesta, D. H., Angadi, S. S., Burtscher, M., & Roberts, C. K. (2013). The effects of caffeine, nicotine, ethanol, and tetrahydrocannabinol on exercise performance. Nutr Metab (Lond), 10(1), 71. doi:10.1186/1743-7075-10-71

Reid, M. B. (2001). Invited Review: redox modulation of skeletal muscle contraction: what we know and what we don't. J Appl Physiol (1985), 90(2), 724-731.

Reid, M. B. (2008). Free radicals and muscle fatigue: Of ROS, canaries, and the IOC. Free Radic Biol Med, 44(2), 169-179. doi:10.1016/j.freeradbiomed.2007.03.002

Rosser, J. I., Walsh, B., & Hogan, M. C. (2009). Effect of physiological levels of caffeine on Ca2+ handling and fatigue development in Xenopus isolated single myofibers. Am J Physiol Regul Integr Comp Physiol, 296(5), R1512-1517. doi:10.1152/ajpregu.90901.2008

Wellek, S., & Blettner, M. (2012). On the proper use of the crossover design in clinical trials: part 18 of a series on evaluation of scientific publications. Dtsch Arztebl Int, 109(15), 276-281. doi:10.3238/arztebl.2012.0276

Zhou, S., & Weston, S. B. (1997). Reliability of using the D-max method to define physiological responses to incremental exercise testing. Physiol Meas, 18(2), 145-154.

DOI: https://doi.org/10.15203/CISS_2017.008

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.